Obtaining an Analytical Model for Low-swirl Combustion - Apply Particle Imaging Velocimetry (PIV) to measure instantaneous velocity vectors within an area of 13 x 13 cm - Facilitates the collection of a large amount of flowfield data - Characterize flowfield and flame behavior as function of: - swirl number - fuel type - fuel air ratio - bulk flow velocity - Define key parameters that characterize the flowfield - Develop analytical model for the relationships between the flame and flowfield - Basis for scaling and adaptation guidelines - Less reliance on computational fluid mechanics (CFD) - Reduce uncertainties and increase predictability #### Apparatus, Diagnostics & Analysis - LSI mounted to the plenum and premixer of an industrial burner - Applied PIV to atmospheric open flames - Previous development with Solar demonstrated relevancy of open flame experiments - Deduced mean, rms velocities, Reynolds stresses & turbulent flame speeds #### **Experimental Conditions** - Lean flames burning single and dualcomponent fuels with a range of Wobbe indices - Operating regimes for each fuel defined by LBO and emissions - Varied bulk flow velocity U₀ from 7 to 22 m/s | J | | | | |---|-------------------------------|--------------------------------|--| | Fuel
Composition | T _{ad} at φ = 1
Κ | S _L at φ = 1
m/s | S _L at T _{ad} =
1800K | | CH ₄ | 2230 | 0.39 | 0.17 | | C ₂ H ₄ | 2373 | 0.74 | 0.23 | | C ₃ H ₈ | 2253 | 0.45 | 0.22 | | 0.5 CH ₄ / 0.5 CO ₂ | 2013 | 0.20 | 0.12 | | 0.6 CH ₄ / 0.4 N ₂ | 2133 | 0.31 | 0.16 | | 0.6 CH ₄ / 0.4 H ₂ | 2258 | 0.57 | 0.22 | | H ₂ | 2535 | 2.4 | 0.61 | | 0.5 H ₂ / 0.5 N ₂ | 2056 | 1.2 | 0.61 | Raw PIV image showing wrinkled premixed turbulent flame structures #### **Hydrocarbon Flame Results** Mean velocity vectors on axial plane # Normalized mean vectors and Reynolds stress at $U_0 = 7$ m/s # Normalized mean vectors and Reynolds stress at $U_0 = 10$ m/s # Normalized mean vectors and Reynolds stress at $U_0 = 15$ m/s # Normalized mean vectors and Reynolds stress at $U_0 = 19$ m/s # Normalized mean vectors and Reynolds stress at $U_0 = 22 \text{ m/s}$ #### PIV Measures the Parameters that Describe Flame/Flow Coupling in LSI • Four parameters deduced from the centerline velocity profile Virtual Origin, x_0 , Normalized Axial Divergence Rate, a_x , Flame Position, x_f and Turbulent Flame Speed, S_T #### S_T of CH₄, C₃H₈, C₂H₄ and Diluted HC Flames Show Linear Correlation - S_T from LSI flames consistent with those of previous studies - Linear behavior unique to low-swirl combustion - Additional data being obtained at higher U₀ #### Trends of x₀, and a_x with Reynolds Number Indicate Similarity - Virtual origin x₀ leveling-off at high Re - Slight shift of the divergence flow structures into the injector barrel with increasing velocity - Normalized divergence stretch a_x insensitive to Re - Combustion generates a systematic increase in a_x - Nearfield flow structures have a similar form that is independent of power output #### Similarity in the Nearfield Shown by Normalized Centerline Profiles #### Significant Implication of Similarity - Provides an analytical means to quantify the flame/flow relationship by the use of a_x, U₀, S_T and x_f - the axial velocity at x_f is $$U_o - \frac{dU}{dx} (x_f - x_o) = S_T$$ Divide through by U₀ and invoke S_T correlation gives $$1 - \underbrace{\frac{dU}{dx} \underbrace{(x_f - x_o)}_{U_o}}_{(x_f - x_o)} = \underbrace{\frac{S_T}{U_0}}_{U_o} + \underbrace{\frac{S_L}{U_0}}_{U_o} + \underbrace{\frac{2.16u'}{U_o}}_{U_o}$$ invariant due to similarity (i.e. a_x) asymptote at large U₀ small at large U₀ constant for plate turbulence Flowfield similarity and linear S_T correlations explains why flame remains stationary through a wide range of velocities and ϕ ## Flashback and Flame Positions Predictable from Analytical Equation - Results imply that fuel effects are significant only at low U₀ - Velocity at flash back correlates with S_L - Flame position independent of S_L at large U₀ # Flashback Considerations for Low-Swirl and High-swirl Combustion oscillation flashback Vortex breakdown flashback due to axial vorticity in recirculation region Flashback through hot boundary layer at flame attachment region Convective flashback local velocity < S_⊤ - LSC analytical model addresses convective flashback - Need studies on LSC vulnerability to combustion oscillation flashback # Flowfield Features Unaffected by Fuel Type - Flowfield features of CH₄ and diluted CH₄ flames are the same - Flame stabilization mechanism not affected by variation in fuel composition - Slight shift in flame position due to slower burning flame # LSI Supports Stable < 5 ppm NO_x Hydrocarbon Flames - Exponential NO_x dependence on φ - CO emissions within acceptable limits #### NO_x Emissions Show Log-linear Dependency on Flame Temperature - NO_x emissions from STP laboratory experiments consistent with data at gas turbine conditions - Absence of strong recirculation in LSI may explain the correspondence between laboratory and GT emissions #### Preliminary Conclusions on Hydrocarbon Fuel-Flexibility Studies - LSI accepts all test fuels including CH₄ diluted with H₂ - LSI supports stable < 5 ppm NO_x flames - NO_x emissions scale with adiabatic flame temperature - NO_x emissions from laboratory flames STP consistent with high pressure rig test data at turbine conditions - Significant adjustment may not be necessary for current LSI to fire with hydrocarbon fuel blends - **S**_T of hydrocarbon and CH₄ flames have same correlation - Recent high T, P rig-tests at Solar Turbines demonstrate firing with fuels from 550 Btu/ft³ to 1250 Btu/ft³ #### Considerations for Adaptation of LSI to Fuel-Flexible & IGCC Turbines - Changes in flame speed correlation will be the 1st order effect - Turbulent flame speeds for HC fuels have similar correlation as natural gas - Significant redesigning of swirler may not be necessary - Turbulent flame speed data for H₂ mixtures are lacking - Large uncertainties in laminar flame speed data for lean H₂ mixtures - Changes in heat release will be the 2nd order effect - Changes in LSI flowfield correlates with combustion heat release - LSI swirl rate can be adjusted to accommodate the fuel effects - Increase or decrease the swirl rate to optimize flame position